可降解材料及其应用

中国科技纵横 / 2018年08月18日 22:30

新闻

生物降解材料的合成及其应用研究

单怡然

摘 要:可降解材料因传统的塑料材料的对环境造成污染的缺陷而诞生,可降解材料在完成使命后能进行自我分解,回归大自然。可降解材料可分为光降解材料、生物降解材料以及其他降解材料三类,重点叙述了这三种分类的材料的作用原理及其性能,介绍了可降解材料存在的缺点及改进方向。

关键词:可降解材料;光降解材料;生物降解材料

中图分类号:TQ464 文献标识码:A 文章编号:1671-2064(2017)07-0210-02

由于传统塑料材料的机械强度与韧性优良,传统塑料材料被广泛应用于包装材料,但是对石油基材料的过度使用,导致一次性消耗的自然资源过多,这使环境恶化。处理石油基包装材料的主要方法——填埋、焚烧造成了对居民的困扰。随着人们环保意识的不断加强,可降解材料应运而生,针对资源短缺、环境污染的问题,可降解材料的特点是原料绿色无污染,降解之后的产物对环境影响污染较小,甚至无污染。

1 可降解材料的概述

可降解材料是在生产过程中加入添加剂,使其本身在一定时间内能维持普通塑料的正常功能,超过一定时间或被废弃后,在光或微生物或其他因素的作用下,进行自身降解而后消失的材料。可降解材料可以减少一次性的难降解塑料在焚烧时对环境造成的危害,缓解填埋一次性难降解材料造成的人地矛盾。可降解材料从降解方式进行分类,可以分为光降解材料、生物降解材料以及其他降解材料。

1.1 光降解材料

光降解材料是一类添加光敏剂或引入特殊键的光敏基团,在太阳光的参与下,自身能进行对自身结构进行破坏的材料。

一类光降解材料的作用原理是聚合物在吸收太阳光后,光增敏基团被激活,使聚合物产生有双键等易于被降解的杂质,进一步发生氧化反应,最后降解为二氧化碳和水。例如:将一氧化碳为光敏单体与烯烃类单体聚合得到的如含有羰基结构的聚乙烯、聚氯乙烯等的光降解聚合物与同类树脂混合,可得到一种光降解材料;另一类光降解材料的原理是聚合物在生产时加入少量光敏剂,光敏剂在光照的条件下,促使聚合物产生自由基,加快自身的降解速率。光敏剂具有在光降解材料使用期内抗氧化的作用且能帮助维持光降解材料的正常使用,但在光降解材料使用期过后,又能促进其吸收光能进行自我分解的双重作用。含有光敏剂的光降解材料可分为含有过度的金属化合物如金属氧化物、有机金属化合物等的光降解材料和含有如蒽醌、嵌二萘等具有敏化烯烃塑料的多环芳香族碳氢化合物的光降解材料。

影响光降解的因素有聚合物结构(如含有羰基等)、光敏剂的添加、光波长、大气条件。光降解材料的缺陷有:第一,光降解的引发剂大多是对人体有害,因此不能应用于食品级,医疗级塑料;第二,大部分光降解材料不能被完全降解,这可能使其对环境的危害更大,第三,光降解材料应用范围较狭窄(地域狭窄),但可大面积应用于农田。

1.2 生物降解材料

由于光降解材料的局限,以及广泛的生物来源,目前的研究热点更多地放在生物降解材料上,相对于光降解材料,生物降解材料的原料来源更加绿色,降解的产物对环境的污染性也更加小。生物可降解材料是一类在酶或微生物的作用下,使维持自身结构的分子链逐渐断裂,形成对环境无害的小分子化合物的材料。

生物降解的方式有生物的物理、化学作用和酶的直接作用。根据来源的不同可以分为微生物降解型的生物材料、合成高分子型的生物降解材料、天然高分子型的生物降解材料。微生物降解材料是以有机物为碳源,微生物进行发酵转化为高分子聚酯,利用这种高分子聚酯制作为塑料的材料。合成高分子型的生物降解材料是利用化学方法合成在自然界中与原本存在的利于降解的高分子化合物。天然高分子型的生物降解材料是在合成时以淀粉、纤维素、木质素等多糖化合物为原料,在必要的条件下加入生物降解添加剂或经氧化、改性而加工制成的塑料。其中,淀粉基构成的可降解材料和PLA构成的可降解材料是当今研究的热点,PHB作为可降解材料也有较为广泛的应用。

淀粉通过植物光合作用而形成的,易得,降解后仍以二氧化碳和水的形式回归到生态环境中,是完全无污染的非常优良的生物降解材料。针对淀粉作为原料来源的淀粉基塑料是目前可降解材料领域研究的一大热点。淀粉基塑料研究的阶段主要有三个:第一阶段是少量淀粉加入到传统塑料中来达到可降解的目的;第二阶段是增加淀粉含量和淀粉与其中组分的连接;第三阶段是将淀粉经过处理,形成完全由淀粉组成的塑料。对淀粉进行改性,使其能够进行生物降解或能溶于水是研究的热点话题,如PVA与淀粉的混合物的研发。淀粉基塑料还有需降低成本、提高机械强度,以及提高给降解材料的降解周期控制等研究空间存在。目前研究最为成功的是将淀粉和高分子材料进行共混得到性能良好的可降解材料。

PLA(聚乳酸)是多糖经过降解发酵制得、纯化、聚合而成的环境友好型树脂。PLA是由乳酸分子在一定条件下脱水缩合而成。PLA在土壤掩埋条件下,在温度、氧气、弱碱性的共同作用下,6~12个月降解为乳酸,最终经微生物代谢,形成二氧化碳和水。PLA因其优良的生物相容性和机械强度,被广泛应用于新兴功能型医用高分子材料如医用手术缝合线、骨科用固定材料等。

PHB(聚β-羟基丁酸酯)是细菌体内碳源和能源的以颗粒状储存的酯类积累物。PHB对气体有阻挡性,能用于未添加抗氧化剂的食品的包装袋;PHB有良好的生物相容性,可用于手术缝合线、骨折固定材料;因PHB能够降解,可用于与农药或贵重药品的包埋处理。因为PHB用细菌发酵法进行生产,所以PHB的生产重点放在基因工程等技术。针对其易结晶、较脆、降解速度较慢的缺点,如何通过物理或化学的方法改善PHB的性能成为研究的重点对象。

1.3 其他降解材料

PVA(聚乙烯醇)因具有可控性——控制其醇解度和聚合度来把握PVA的溶解时间,成膜性、物理强度好——完全可以满足制做塑料的条件、毒性低、可达到100%降解、降解产物对环境无危害等优点,成为能够替代当今塑料的重点材料。PVA的原材料,PVA树脂分子链上的醋酸乙烯酯基体积较大,该基团的存在使得分子链上的羟基之间不易形成氢键,也一定程度上阻止了大分子之间的相互靠近,而PVA分子链上的羟基能和水分子之间形成氢键,这使PVA具有良好的水溶性,优异的水溶性有利于材料的降解。但是,单一的PVA材料机械强度难以满足使用要求。目前,淀粉/PVA共混体系能够满足塑料的正常使用,但是随着时间的加长,其力学性能下降得很快,说明其基本能满足可降解材料的条件。若要提高淀粉/PVA的耐水性,则可对淀粉/PVA共混体系进行甲基化改性、交联处理、加入纳米二氧化硅或加入柠檬酸和石油砂。但是PVA的生产工艺主要为流延法——首先将原料组分配好,后和水流延涂布到不锈钢辊上,再进行刮、剥离、收卷等工艺,因此,存在效率低和费用大的缺陷。PVA还需解决如何使高温水溶膜遇低温水完全不溶以及均匀及透明等问题。

光/生物双降解是一类加入一定量的光敏剂、促氧化剂等的在光和生物的共同作用下进行降解的聚烯烃材料。第一,有研究表明,生物降解以光降解为基础,对此,因其现已用于地膜、餐盒,这表现出了这种兼具两种降解方式的的技术先进性和实效性;第二,光/生物双降解材料降解较快,约60天能被完全降解。

2 发展前景及展望

大部分的可降解材料存在机械强度较小和韧性较弱以及降解的控制性较弱的缺點,因此,第一,可以多开发复合型可降解塑料,避免了单一原料造成的力学性能缺陷着重点放在开发应用范围广,原料易得、价格低廉的产品;第二,简化生产工艺扩大生产来促进可降解材料为我们实际生活所用。

3 结语

随着人们环保意识的增强和科技的飞速发展,可降解材料逐步取代石油基材料是必然趋势,如何充分发挥可降解材料的融传统包装材料的功能和特性和可降解,回归大自然的优点,成为各国研发的重点。

参考文献

[1]汪秀丽,张玉荣,王玉忠.淀粉基高分子材料的研究进展[J].高分子学报,2011(1):24-37.

[2]刘林,王凯丽,谭海湖,等.中国绿色包装材料研究与应用现状[J].包装工程, 2016,37(5):24-30.

[3]王小东,李明玲,万新军,等.聚乳酸材料的国内外最新研究进展[J].化工新型材料,2012,40(9):4-6.

1.环球科技网遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.环球科技网的原创文章,请转载时务必注明文章作者和"来源:环球科技网",不尊重原创的行为环球科技网或将追究责任;3.作者投稿可能会经环球科技网编辑修改或补充。