RF—PECVD方式沉积DLC膜中边界扰动现象的探讨研究

中国科技纵横 / 2018年06月20日 18:37

新闻

白凯鑫++朱震++雷亚贵++陈生

【摘 要】类金刚石膜(Diamond Like Carbon)因其优异的物理和化学性能,如高红外透过率,高硬度,低摩擦系数,高耐腐蚀性,高电阻率,高导热率,高化学稳定性等,被科学界誉为二十一世纪的全能材料。本文通过对一起掉膜成因的定性分析,利用等离子体的基本特性,将放电区域内的基片的工作状态等效为电路,根据欧姆定律及类金刚石的成膜原理,探索性的建立了“边界扰动”的概念。

【关键词】DLC RF--PECVD 等离子体 边界扰动

1 引言

随着军事技术及航空航天技术的发展,红外技术越来越受到人们的重视,在军事航天领域有着举足轻重的作用。但红外元件的工作环境往往非常恶劣,而用作红外的窗口材料如Ge,ZnS,ZnSe,GaAs,氟化镁(MgF2),蓝宝石,尖晶石等在应用中都存在一些问题,比如Ge在高温时透过率下降,ZnS耐湿性差,ZnSe虽然红外透过率高,但机械强度和耐腐蚀性差等等,当在这些材料表面镀上DLC保护膜后,这样的红外窗口既有较高的红外透过率,又有很好的综合性能抵抗恶劣的环境且制备成本低,因此是目前普遍采用的方法。

DLC膜的制备方式有很多种,主要分为物理气相沉积和化学气相沉积。目前在光学级DLC应用方面广泛采用的沉积方式是等离子体增强化学气相沉积,常用的等离子体增强化学气相沉积法有两种:直流(DC--PECVD)法和射频(RF--PECVD)法。DC--PECVD法沉积薄膜的优点易于控制极板负偏压,可以对极板负偏压进行大幅度调节,缺点是沉积绝缘薄膜时,薄膜表面积累大量电荷,这些电荷会阻碍薄膜生长,使薄膜的沉积速率降低,薄膜厚度减少。采用射频等离子体增强化学气相沉积(RF--PECVD)法,有效的解决了表面电荷积累问题,从而提高了沉积速度。

RF--PECVD分为感应圈式和平行板电容耦合式两种,感应圈式存在沉积速率低且膜层质量较差等问题,因此实际中多采用平行板电容耦合式。用这种方法制备薄膜,沉积速率高,膜层致密均匀,稳定性好,本文涉及的实验设备就属于这种类型。

用射频等离子体增强化学气相沉积(RF--PECVD)法沉积DLC膜时,会出现边缘和中部的膜厚差异,特别是波长在5微米以下时,仅凭肉眼就可以看到色环。色环的出现是由于膜层的物理厚度不同造成的,边缘的厚度大于中部。色环的出现不仅影响外观而且对高品质成像也有影响,对膜厚差异产生的原因在下面的实验中进行了探索性的研究,为制备高均匀性DLC膜提供了依据,此实验也是工艺生产中一个真实事件。

2 实验过程

2.1 实验设备

沈阳科学仪器厂生产平行板电容耦合式RF--PECVD设备,设备外观见图1,设备内部沉积电极结构见图2。该设备主要由真空沉积系统,真空抽气系统,气路系统,电气控制系统以及控制面板组成。

需要镀制的基片是直径为280mm的硅片,因为是双平片,为了防止背面被设备的极板划伤,在基片的底部装有铝质金属夹具,夹具的外径288mm,压边1mm深度1mm。镀制过程完全按照工艺文件进行,当基片镀制完成从真空室取出后,发现距基片边缘1厘米左右的环行区域内的膜层全部脱落,基片中部膜层完好的奇怪现象,在排除了工艺参数的影响后,最后确定造成这个问题的原因就是1mm深度的金属夹具。

2.2 分析过程

射频放电系统中,一般有一个电极接地,放电时在不接地的那个电极上出现负的直流偏压,这就是所谓的电极自偏压现象。从图2中可以看到上极板接地,下极板及硅基片工作在负偏压状态下。辉光放电产生等离子体,源气体(如甲烷,丁烷等)分解成各种中性粒子和带电粒子,粒子之间相互碰撞发生一系列化学反应,等离子体中的正离子在负偏压的作用向下极板聚集,在硅基片表面形成正离子鞘层,正离子在鞘层中被加速撞击硅基体表面,在分子量级上形成高温高压,这就是类金刚石膜的成因。

当硅基片加装了金属夹具后的状态见图3,从图3中可以明显的看到由于加装了金属夹具使得基片的中部区域与下极板之间形成悬浮状态,边缘则通过金属夹具与下极板接触,也就是说同一个基片的中部和边缘工作在不同的状态下。当不带电的悬浮物插入到等离子体中时,由于等离子体中的电子和正离子都在进行热运动,根据分子运动论,在单位时间内落在单位面积上的粒子数(1.17)ne、 ni分别是等离子体中的电子浓度和正离子浓度,ve、vi 是电子和正离子各自的平均热运动速度。如果正离子是单荷的,则ne=ni,所以他们的电流密度分别是(1.18)。

由于等离子体中ve比vi大,所以je>ji。于是悬浮物就出现负的净电荷。由于金属夹具使硅基片与工作在负偏压状态的下极板连接,因此硅基片处于负电压状态。等离子体具有集体准中性特性,当带负电性的导体进入等离子体后其周围会有正电荷聚集,以抑制其对等离子体准中性的破坏。因此硅基片的表面聚集有正电荷。假设正电荷形成的电位为Ug,下极板电位即放电区域最低电位为Us,在悬浮区域形成一个电位差为Ug-Us的电场,在这个电场的作用下电子由下基板向硅基片快速移动。

为了进一步说明悬浮区域对沉积的影响,将放电区域内的工作状态等效为电路见图4,图中R为硅基体上表面的离子鞘层,放电区域的大部分能量消耗在这部分,即DLC的成膜区域。R1为金属夹具与硅片之間的接触电阻及夹具自身电阻之和,R2为基片的中部悬浮区域等效电阻。由于它们工作在同一区域,因此可以等效为并联状态。图中A点为离子鞘层上部等离子体的电位(如果忽略上极板的电子鞘层,这个鞘层的电位差很小,那么A点电位近似为上极板电位);B点为下基板的电位即放电区域的最低电位。AB之间的电位差UP约等于自偏压。

根据并联电路的特性我们知道,当两条支路的电阻阻值相差10倍以上,电流几乎全部从低阻值支路通过。

以上比值是在假设电阻率相同的情况下,实际中R2的电阻率小于R1的电阻率。这是因为随着硅基片表面的正电荷的增加,悬浮区域鞘层的厚度会增加,鞘层内粒子的运动速度变快密度变大,根据公式2可知电流会变大;悬浮区域的电子数增加又会吸引更多的正电荷,当达到一定值时悬浮区域接近导体。因此放电区域的大部分电流通过悬浮区域流通。

放电区域的电压是不变的,因为R1≥70R2根据欧姆定律可知I1≤70I2,又根据电功率的公式P=U×I ,可知P1≤70P2,P1为图3中深色区域的功率即金属夹具与硅基片接触的环形区域,P2为图3中浅色区域的面积即悬浮区域的面积,所以硅片边缘的功率远低于硅片中部的悬浮区域。

2.3 边界扰动

比功率密度过低,电场供给反应气体粒子平均能量不足以打开C-H键,或让C键合理重组时,不能成膜。过高时,粒子对膜层注入能量过大,会破坏已形成的C-H键,因而也无法成膜。所以比功率密度必须在一个合适的范围内。硅基片的下部虽然形成R1R2区域,但上部的正离子鞘层是一个整体。假设两种极端的情况:第一R2区域良好的导电性吸引着R1区域的全部正离子加入其中,则R1区域的电流为零,根据电功率的公式则P为零,比功率密度也为零,所以无法成膜。第二 功率不变,正离子的减少相当于比功率密度公式中Py趋近于零,则比功率密度接近无穷大,因此也无法形成DLC膜。R1与R2的比值越大这种影响越明显,就像是一种竞争的关系,结果愈强则愈强,愈弱则愈弱。对于同一个基片这种影响还有渐变的范围,似乎是R1逐渐过渡到R2,所以脱膜不止在1mm压边的环形区域里,而是远大于它的10mm左右的环形区域。我们将这种影响定义为边缘扰动现象,它与相邻区域的电阻比值有绝对关系,在实际中确实发现:直径小于40mm的硅平片,装金属夹具不会出现边缘掉膜现象。

2.4 验证试验

当把金属夹具去除,用相同的工艺重新镀制,边缘掉膜的现象消失。膜层良好。

为了验证这一结论,用直径为:250mm 的硅片两件,一件装夹具(SEP1),另一件不装(SEP2),用相同的工艺镀制类金刚石膜,镀制完成后做环境实验(环境实验条件: 温度50℃;相对湿度95%;时间:24小时),结果见表1。

3 结果与讨论

在辉光放电等离子体中,由于电导率不同的相邻区域,边缘出现相互扰动的现象,是普遍存在的。以验证试验的SEP2为例,SEP2的膜层出现色环,色环的出现依然是边缘扰动的结果,与下基板相比,硅片自身的电阻是不能忽略的,因此在硅片的周边与基板之间又形成了电导率不同的相邻区域,受低电阻率的下基板影响,硅片周边一定区域内的功率密度也会增高,造成与中部的沉积速率不同,边缘沉积速率大于中部。从DLC膜的成膜原理我们知道比功率密度是有一定范围的,高于或低于这个范围都无法沉积DLC膜。尽管硅片的周边和中部的功率密度不同,但由于它们都在这个范围内,因此都沉积出良好的DLC膜。

4 结语

在工艺生产的过程中許多看似怪异的现象,其实背后都有本质的原因,只要进行深入分析研究,就能找到规律,从而找到解决问题的方法,甚至会有新的发现。

参考文献:

[1]李金丽,刘全校,许文才.光学薄膜及其发展现状[J].化工新型材料,2012(02).

[2]沈远香,黄晓霞,王永惠.光学薄膜的研究新进展及应用[J].四川兵工学报,2012(08).

1.环球科技网遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.环球科技网的原创文章,请转载时务必注明文章作者和"来源:环球科技网",不尊重原创的行为环球科技网或将追究责任;3.作者投稿可能会经环球科技网编辑修改或补充。